Norm inequalities for some one-sided operators
نویسندگان
چکیده
منابع مشابه
Two weight norm inequalities for fractional one-sided maximal and integral operators
In this paper, we give a generalization of Fefferman-Stein inequality for the fractional one-sided maximal operator: Z +∞ −∞ M α (f)(x) w(x) dx ≤ Ap Z +∞ −∞ |f(x)|M αp(w)(x) dx, where 0 < α < 1 and 1 < p < 1/α. We also obtain a substitute of dual theorem and weighted norm inequalities for the one-sided fractional integral I α .
متن کاملOn Some Weighted Norm Inequalities for Littlewood–paley Operators
It is shown that the Lw,1< p<∞, operator norms of Littlewood–Paley operators are bounded by a multiple of ‖w‖ Ap , where γp = max{1, p/2} 1 p−1 . This improves previously known bounds for all p > 2. As a corollary, a new estimate in terms of ‖w‖Ap is obtained for the class of Calderón–Zygmund singular integrals commuting with dilations.
متن کاملNorm Inequalities Relating One-sided Singular Integrals and the One-sided Maximal Function
In this paper we prove that if a weight w satisfies the C q condition, then the Lp(w) norm of a one-sided singular integral is bounded by the Lp(w) norm of the one-sided Hardy-Littlewood maximal function, for 1 < p < q <∞.
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملWeighted Norm Inequalities for Fractional Operators
We prove weighted norm inequalities for fractional powers of elliptic operators together with their commutators with BMO functions, encompassing what is known for the classical Riesz potentials and elliptic operators with Gaussian domination by the classical heat operator. The method relies upon a good-λ method that does not use any size or smoothness estimates for the kernels. Indiana Univ. Ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2013
ISSN: 1331-4343
DOI: 10.7153/mia-16-39